Mining Subjective Data on the Web

نویسندگان

  • Mikalai Tsytsarau
  • Themis Palpanas
چکیده

In the past years we have witnessed Sentiment Analysis and Opinion Mining becoming increasingly popular topics in Information Retrieval and Web data analysis. With the rapid growth of the user-generated content represented in blogs, wikis and Web forums, such an analysis became a useful tool for mining the Web, since it allowed us to capture sentiments and opinions at a large scale. Opinion retrieval has established itself as an important part of search engines. Ratings, opinion trends and representative opinions enrich the search experience of users when combined with traditional document retrieval, by showing more insights about a subject. Opinion aggregation over product reviews can be very useful for product marketing and positioning, revealing the customers’ attitude to a product and its features along different dimensions, such as time, geographical location, and experience. Tracking how opinions or discussions evolve over time can help us identify interesting trends and patterns and better understand the ways that information is propagated in the Internet. In this study, we review the development of Sentiment Analysis and Opinion Mining during the last years, and also discuss the evolution of a relatively new research direction, namely, Contradiction Analysis. We give an overview of the proposed methods and recent advances in these areas, and we try to layout the future research directions in the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expert Discovery: A web mining approach

Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. Aim of this study is to address the issues for expert-finding task in real-world community. Collabor...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences

Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...

متن کامل

A Technique for Improving Web Mining using Enhanced Genetic Algorithm

World Wide Web is growing at a very fast pace and makes a lot of information available to the public. Search engines used conventional methods to retrieve information on the Web; however, the search results of these engines are still able to be refined and their accuracy is not high enough. One of the methods for web mining is evolutionary algorithms which search according to the user interests...

متن کامل

MHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs

In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...

متن کامل

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010